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1. INTRODUCTION

The problem of characterization of weights in weighted L p rational
approximation of piecewise smooth functions 1 was introduced and studied
in [4]. A motivation for the study of this subject is its relationship to the
realization of recursive filters. In practice, it is sometimes desirable to
include a multiplicative factor s with the rational approximant 'no This
leads to the so-called generalized inverse approximation problem (cf.
[1,3J). An example is 1=.1, and in this case 'n provides an inverse
approximation of lis, which is a generalization of the least-squares inverse
approximation that guarantees stability [2]. To facilitate our discussion,
we need some notation and definitions.

Let

be a partition of the interval [0, I]. As in [4J, we will also use r to denote
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the set {x i , ... , X m} of interior partition points. Let U = {11 \•..., 11m} be a
system of non-negative integers and denote by A(r, V) the collection of all
complex-valued continuous functions f on [0, 1] whose restrictions on
each I j = [x}, x/+ tJ are analytic on I j , j= 1, ..., m, and satisfy the joining
conditions

s=o, ..., !I/,

and

If U =°:= {O, ..., OJ, then we will simply write A(r, U) = A(r). Let IV

denote an arbitrary weight function, i.e., IV is measurable and 0 < Ii' < ex
a.e. on [0, 1]. For any measurable function f defined on [0, 1], we will use
the notation

IlfIILel"j=
{f I f(xW w(x) dxr

p

o )

ess sup If(x)1 w(x)
O~x~l

if 0 <p < 00,

if P =00.

Of course, if 1~P ~ 00, Ii ·11 LeI") defines a norm for the space Lp(w) of
functions f with Ilfll Lel"'j < 00. Let Rn[a, b] denote the collection of all
rational functions Pn/qn where Pn and qn are in R n, the set of all
polynomials of degree ~n, and are relatively prime, with qn(x) -=I 0 for all x
in [a,b]. In addition, set Rn=Rn[O, 1] and R=U"Rn. Let

L1:0=YO<YI< ... <YI+I=1

be another partition of [0, 1] and V = {r I' ... , VI} the corresponding system
of non-negative integers. Let s be a fixed function in the class A(Ll, V). The
"distance" of f from sRn will be denoted by

en(s,j)Lrl,r) := inf{ Ilf- srn II Lrl"'l: r n E Rn },

where O<p~ 00. We also need the following notation introduced in [4].
For any weight function w on [0, 1], set

Up ( w) = {x E [0, 1]: f w(t) dt = OC', for all b > 0~
[<-3.<+3],,[0.1] J

if 0 <p <00 and

Ux(W) = {XE [0,1]: ess sup 1 w(x) = 00, for all J > 0~
[<-1>.<+1>]" [0, \J J
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For any systems e = {O l' ..., 0d and .4'{ = {PI' ..., ,uk} with
o~el < '" ~ek~ 1 and Ill' ..., J1k>O, denote by Wp(e, .4(/), O<p~ co,
the collection of all weight functions w on [0, 1] that satisfy the conditions

and

kn I . - es 1
11

' E L p( It').
s= I

The main result in this paper can be stated as follows.

THEOREM 1. Let the classes A(T, U) and A(LI, V) be defined as above, s
a fixed function in A(LI, V), O<p~ co, and w a given weight function on
[0,1]. Then a necessary and sufficient condition for en(s, f)Lp( .... ) ~°as
n ~ co where f is an arbitrary function in A(T, U)\R, is that there exist e
and .4't such that WE Wp ( e, 0/#) and the following conditions are satisfied:

(i) The set eJj={XE[O, l]:s(x)=O} is finite and eJj",Up{w)=t/;;
furthermore, if p = co, then for every q; E if>

lim ess sup lI'(x) = O.
Ii ~o+ XE[<p-li. <p+b]n [0,1]

{l}

or

(2)

lim 1IY..[o-ii 8)('-(})'''2+
I IIL' .)=0

b~O+ )'J J p\"-

or

lim Ilx[8.,O +ii](·-ey'2+ 1 lI L (W,=O.
0-0+ J} . p

Here and throughout, XJ denotes, as usual, the characteristic function of
the set J.
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2. PROOF OF THE NECESSITY CONDITION
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(3)

as n ----). oc. for any fE A(T, U)\,R. The proof of the existence of e and j!

such that WE Wp ( e, oif) is similar to that given in [4] (of course, it is
possible that both of e and ..,1/ are empty). Next we prove the necessity of
the conditions in (i). Assume that cP is an infinite set. Then s vanishes iden­
tically on some interval Ij = [x), xj + I]. LetfE A(T, U)\R withf(x) = 1 for
x E II" By (3), there exists a sequence {r,,} c R such that

Ilxl} II Lp("j ~ Ilf- s r,,11 L rl ,,) ----). O.

It follows that w(x) = 0 for almost all x on Ij , which is a contradiction to
our assumption on w. Set cP = {qJ I' ... , qJ q} and let {r n } be a sequence in R
such that

Pn:= Ilfo-sr,,11 Lp(l;'j----).O,

wherefoEA(T, U) and satisfiesfoC\")> 1 for all XE [0,1]. For every fixed
n, there exists a positive b" such that

max sup Ix ['1'-6". 'PJ +bn ] n [0. 1 ](x) s(x) r,,(x)1 ~ 1/2.
) x

Thus we obtain

q

I IIX['P1-6n.'P}+6n]"[0,1]IILp(ld~2qp,,----).O
j~ 1

as n ----). oc. It is easy to see that this is equivalent to the conditions in (i).
Now we will show that conditions (ii) and (iii) are also necessary.
Let us first assume that 8j =Xs ,ET\J. Since cPnUp(w)=¢y, there

exists a small positive b* such that s does not vanish on [8) - 6*,
(Jj + b*] n [0, 1], and without loss of generality, we may assume that on
this set S>8*>0, and since 8/tLJ, that s is analytic there. By [4], there
exist 1"" E R such that

(4)

where
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If both (1) and (2) do not hold, then r n must be of the form

(
_ (x_O)~I+l Pn-u,,-I(X)

r n x) - ( ) ,
qn X

wherepn_u'I~IE1Cn_(u'L+[) and qnE1Cn' Hence, by (4)

X(._Ojt'I+I X[OJ- b*,eJ+b*Jn[O,[J(·)11 ~O
Lp(w)

and it follows that

d Pn-u'l _1(X) I
dx qn(x) x~eJ = 00

(cf. the proof of Theorem 1 in [4]). But this is impossible. Similarly, if
OJ =YS

2
E A\r, then we arrive at a similar contradiction when we assume

that both (1) and (2) do not hold.
Now suppose that OJ=XSI =Ys

2
Er"A, and set v=min(usl ' us). Assume

that both

(5)

and

(6)

do not hold. Then since f[J" Up ( w) = rjJ, we may assume that s(x) > e* > 0
on some small interval [OJ-<5*, OJ+<5*] ,, [0,1]. From (3), we obtain (4)
for some {r,,} c R. Set

f*(x) =f(x) ,
s(x)

Then both of the restrictions off* on [OJ-<5*, OJ] and [OJ,Oj+<5*] are
analytic on the corresponding intervals. Furthermore, (dSjdxS) f*(x),
s = 0, ..., v, are continuous at x = OJ and
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Set

\' l(dS

)p*(x)= L , -dJ*«()j) (x-e)'.
s~os. x

Then f* - p * is of the form

201

f*(x) - p*(x) = g*(x)(x _ ()j)" + I

and g* satisfies the inequality

g*«();-) =lg*«()/).

If both (5) and (6) do not hold, then rn must be of the fonn

( )= *( )+(x- 8X+ 1
pn_( H1 l(X)r n x p x 0

qn{x)

From (4) it follows that

III
*() Pn - (v + 1)( 0) I( () )V + I ( ) IIg . - (0) .- j X[BJ -6*.BJ +6*]n[Ool] 0 ,

qIZ Lp ( \Y } -+ 0

yielding

which is again a contradiction.

3. PROOF OF THE SUFFICIENCY CONDITION

In order to prove that the conditions in Theorem 1 are sufficient we need
several lemmas. The first one was established in [4].

LEMMA 1. Let '1=exp(-l/~), ~1"",~qE[-I,O)u(O,1],/1>0, and
Pi> 0, j = 1, ... , q. Then for an)' constants <5, B, C, e, and CI' ... , cq satisfving

0< J < 1/2, 1< B[Il] + I < e, c> 1, and c:>O,

there exist rational functions rnE RmJ -1, 1] with m" = n + O{~) such
that
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Isgn x- rn(x))

0(1) for XE[-1(,17n
],

o ((B[':] + I)v"';;) n IX-~J-sJB-V';;I!'Jlx-sB~v';;I"
~J>O

for XE[17n
, 1],

o((B[~+lr';;)en IX-~J-sJB-fil"jlx-sB-/;;11'
(}<o

for x E [ -1, -17n],

~ q -

o(c-v'n) n IX-~J-sJB-·/nII'J

J= I

for c5:::( Ixi :::( 1,

where the "0" terms are independent of x.

The second lemma we need is a well known result of Bernstein.

LEMMA 2. Let f be analytic on [a, b]. Then there exists a sequence of
polynomials Pn in nn and a positive A such that

max If(x) - Pn(x)1 = O(e-)' n).
a~n~b

LEMMA 3. Let c5, f3 > 0 be given, r = {x 1> X 2 } C (0, 1), U = {u I' U2} and
WE Wp(e, ult), 0 <p:::( 00, for some e = {OJ> ..., 0d and ul{ = {PI' ... , pd·
Suppose that f is a piecewise analytic function of the form

where g is analytic on the interval II = [x I' X2]. Then there exists
r" E R,,, n >no such that

Ilf- rn II Lp(w) = O(A --in + t&"n(B))

for some A> 1 and B> 1, where

6';,(B) = L min(t&";'s(B), t&",~s(B))
8s =XJ ET

with

t&" ,-;: s(B) = (B -"r;;tJ + I II X[8, ~ b, 8, _ B-'"] II Lplw)

+ Ilx[8,-B-,';;, 8,](·)(·-Ost;+1 IILp(wJ

(7)
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+ Ilx[8" 8,+ B<n]( . )(. - es)Uj + III Lp(w)'

Furthermore, {r,,} converges uniformly to f on [0, 1].

The proof of this lemma is similar to that of Lemma 4 in [4]. We
assume, without loss of generality, that b > 0 is so small that g is analytic
on [Xj-b,X2+b] and es~[xl-b,xdu(x2,x2+b],s= 1,..., k, Con­
struct a polynomial Po of degree ~L8,E [." <cJ{ [Ils] + 1) such that

Po(x)-g(x)= n (x-es)[/I;]+I g(x),
ej E[XI.X1]

where g is also analytic on [XI - <5, x 2 + b]. By Lemma 2, there IS a

polynomial P I of degree ~ K[~] - Ls( [/1s] + 1) such that
-

Ig(x)-PI(x)1 = O(e-' ")

uniformly for x E [x 1 - b, x2 + b]. Set

8, E [.'1, .q]

Then P2 is a polynomial of degree K[~] and

(8)

uniformly for x E [x 1 - b, x 2 + <5].
There are the following possible cases:

(l) e (\ t1 = 1;
(2) XI=esoEe,X2~e;

(3) XI~e,X2=esoEe;or

(4) both Xl = eS' and X 2 = esc belong to the set e.

For simplicity, we will only give the proof for the case (4) since the others
can be verified similarily. Set

where

-
x' = X I - 2B - v'" and

-
x" = X 2 - 2B-v''',
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If n is sufficiently large, then we have

s= 1, ..., k.

By (8), we see that

X[x'. X,,](x)(x - XI )Ul + I(X - x 2t" + I P2(X) - f(x)

k

= O(e-·j ;;) n Ix-8s ll's- X[x',<j](x)(X-XdUl+1(X-X2t2+1 P2(X)
s~l

Write

(9)

X[X', x,,](x) = Hsgn(x - x') - sgn(x - x")}.

By Lemma 3, there are rational functions rand r of degree n + 0(;;;) such
that

Ir(x) - sgn(x - x')/

0(1 ) for XE [0, IJ,

r k

O(B[I'Sl]+I/e)"ln n /x-8 s ll's for /x-x'i ~y/n and XE [0, IJ,
,~ 1

k

O(C- vln ) n Ix-8,/l's for Ix-x'l~b and XE [0,1],
,= 1

and

Ir(x) - sgn(x - x")1

0(1) for Ix-x"l ~1(,

k

O(B[l'sz]+I/e )..,I';; n Ix-8,II" for Ix-x"/ >y/n and XE [0,1],
,=1

k

O(c- y ';;) n Ix-8,ll's for Ix-x"I~(j and XE [0,-1],
s=1

where C is an arbitrarily given positive constant. It is known that

P2(X) = O(eA' ,j';;)

for some A' > °uniformly for XE [0, I]. Set C = exp(A' + I) and
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Then we obtain, using (9),

Ilf- r* II L
p
(»') = O(e-"';;) + O(B[/i'1J + I e)";;

+ O(B[/i'2J+ I/e )v';; + O(g,~ ,,(B)) + O(g,~s,(B)),

and this, in turn, assures the existence of rn E R" such that

for some A> 1 and B> 1. Similarly, there exist rn E R n such that

Ilf- rnil L p(»') = O(A -"in) + 0(8; sdB) + .g',~)B)),

IIf - rn II Lp(»') = O(A -,in) + O(clf:"JB) +g; ,,(B)),

or
-

II!- rn II Lp(»') = O(A -,'n) + O(g:'s/(Bj+ g n~s,(B)).

20S

Hence, combining these estimates, we obtain (7). By the same proof,
we can also conclude that {rn} converges uniformly to f on [0, 1], This
completes the proof of the lemma.

Remark 1. A similar proof also shows that the result in Lemma 3 also
holds for Xl = 0 and/or X 2 = 1.

We are now ready to prove that the conditions in Theorem 1 are
sufficient.

Let c[J = {qJ I' ..., qJq} where qJ 1< ... < qJq. We will only consider the case
where qJ I ,",0 and qJ q '"' 1, since the other cases can be verified in a similar

Ch II '(I) d ~(2) '-1 h hmanner. oose sma ()j an u j ,j - , ..., q, suc t at

IS(qJj- qJr»)1 = IS(qJj+ byl)I:= hl ,

Is(x)1 ~hj for XE [qJj-<5)I" qJj+bj2)],

j= 1, ..., q, and Up(w) n Z = rjJ, where

Z=u [qJj-<5j!), qJj+oj2)].
j

Now,

IIf-srnIlLp(»,)~ IISIL-rnl X[O,IJ'ZII
s I LeIH)

+ II If- s rn IXzll L p(»'):= HI + H 2 ·
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Define a continuous function g on [0, 1] as follows:

linear otherwise.
g(x)=

f(x)

s(x)
for x E [0, 1]\Z,

By Lemma 3, it is easy to show that there exist rn ERn, n?: no, such that

HI ~ Iisil ce II g - rnil Lp(w) --+ 0, (10)

as n --+ 00, {rn } converges to g uniformly on Z, and (7) holds. Hence, for all
large n, we have

j= 1, ..., q.

It follows that

q

H 2 ~ Ilfll ce IIXz II Lp(w) + 2 Ilfll co L h; I lis X[rp/- bj", rpj+ b)21] II Lpfw )' (11)
j~1

According to the assumption (i) of the theorem, for any given 6> 0, we can
choose bj') > 0 and Jj21 > 0, j = 1, ..., q, such that

Ilxz II Lp(w) < 6.

Hence, we obtain

(12)

for some constant Cq depending only on q. Combining (10), (11), and (12),
we arrive at

as n --+ co. This completes the proof of the theorem.

4. ApPROXIMAnON ORDER

We will establish the following result.

THEOREM 2. Let the classes A(r, U) and A(L1, V) be given as above,
o<p ~ 00, and sand w satisfy the conditions in Theorem 1. If s(x) > 0 for all
XE [0,1], then
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(i) [here exist A > 1 and B> 1 such that for every f in A(r, U)

en(s,f)Lp(>l) = OrA -V
ill

) + O(8'n(B)),

(ii) there is a A> 0 such that for every f in AIr, U)

whenever

max I1j< min {us +l,vs,+l}.
8J E r U LJ 1 ~ s ~ tn, 1 :os; s' ~ !

Here,

~(B)= L min(8''-;:s(B),8'';:s(B))
9s ETuLf

207

(13 )

with 8',-;: s(B) and 8'';: s(B) defined, similar [0 the notations used in Lemma 3,
as follows:

(1) If8s=xj Er\J, then

Iff.-;: 5(B) = (B-,,;;tj+ I Ilx[xj-b. x,- B-' n] II Lp(w)

+ Ilx[xr B<·';. x
j
]( • )(. - X j )"l + 111 L p(" I'

rff';: s(B) = (B-",r,;)"j+ I Ilx[xj+ B<;;. Xj+ dl L
p

( W)

+ Ilx[xj. xj+B<;;]( .)(. - .\)uj+ 11ILp('I')'

(2) If 8s = YJ E J\r, then rff,-;: s(B) and 1ff,;'s(B) are defined as above with
the exception that xj and ui are replaced by YJ and Vj' respectively.

(3) If8 s=x l1 =Yj,Ednr, then

8- (B)=(B-,,';;)min(uj["J~)+lllx . -;; II
II, s [9, - o. e, - B , ], Lpl '" I

+ Ilx _ -;; (·)·-8 )min(uj[,l'j2 1+ I I'
[e,.-B , .e,] s 1 L p("')

and 8'n~ ,(B) is defined similarly.

We now sketch a proof of this result. If s > 0, then it follows that

Ilf-s rnIILp('I')~ Ilsll'X !lg-rnIILp(w), (14)

where g=f/sEA(r*, U*),r*=ruJ={ZI,,,,,Zm'} with ZI<Z2<'" <
Zm" U* = {uf, ..., u~,}, and ut,j= 1, ..., m', defined by

if zJ E r\J,

if ZjE d\r,
if zjEAnF.
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Hence, there is a polynomial Po of degree ';;;;L:j~ 1 Uj* + m' such that

m'

g(X)-Po(X)= I (x-XjtJ"+-I(X-Xj+ltl+I+! gix ) x4x )
j~O

m'

(15)

say, where I j = [Zj' Zj+ IJ,j=O, .." m', and gj is analytic on I j , By Lemma 3
and Remark 1, we see that there exist A j > 1 and Bj > 1, j=O, .." m', such
that

enUj)Lp(w) = O(Aj--Jn) + O(<ffll (Bj )),j=O, 1, .." m', (16)

Then (14), (15), and (16) together give the conclusion (i) in Theorem 2,
If the condition (13) is satisfied, then it is easy to see that

C,,(B) = O(S-vin)

for some Sj> L Thus, (ii) follows from (i).

Remark 2. Condition (13) cannot be deleted. In fact if there is a
Bjo E LI n r such that ,ujo = mint Us + 1, Vs + l}, then conclusion (ii) of
Theorem 2 does not hold.

5. ApPROXIMATION OF PIECEWISE SMOOTH FUNCTIONS

We need some notation. Suppose that rand U are given as in Section 1
and q is a positive integer such that maxj Uj < q, Denote by C(r, U) the
collection of all complex-valued continuous functions f on [0, 1J whose
restrictions on each I j = [Xj' Xj +! J belong to Cquj ), the class of functions
with qth order continuous derivatives on Ij , and satisfy the joining
conditions

s=O, ..., uj '

with

for j= 0, ..., m.
By modifying the proofs in the above discussions, we have also

established analogous results for the class Cq(r, U). We state these results
without proof.
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THEOREM 3. Let s be a given function in A(LI, V), 0 < p < 00, and h' a
given weight function on [0, 1]. Then a necessary and sufficient condition for
eAs,f)Lp(lI) --+ °as n --+ 00, where f is an arbitrary function in Cq(F, U), is
that the conditions of Theorem 1 are satisfied and Ji j <q for all j = 1, ... , k.

THEOREM 4. Let s and It' satisfy the conditions in Theorem 3 with
O<p< 00. Ifs(x»Ofor all XE [0, 1J, then

0) there exists B> 1 such that for every fin Cq[F, UI

where!; denotes the restriction off on I j and w(f, l/nh
r

the Lp-modulus of
continuity of f i , and

(ii)

(
1

m
( 1) \e ll(s,fhr(w) = 0 q L w f;, - )

n j=O n L p

provided

max Jii< min {us+l,vs·+l}.
8J ETud· l:S;;s:S.;m.l~s'~f
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