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1. INTRODUCTION

The problem of characterization of weights in weighted L, rational
approximation of piecewise smooth functions f was introduced and studied
in [4]. A motivation for the study of this subject is its relationship to the
realization of recursive filters. In practice, it is sometimes desirable to
include a multiplicative factor s with the rational approximant r,. This
leads to the so-called generalized inverse approximation problem (cf.
[1,3]). An example is f=1, and in this case r, provides an inverse
approximation of 1/s, which is a generalization of the least-squares inverse
approximation that guarantees stability [2]. To facilitate our discussion,
we need some notation and definitions.

Let

Id=xo<x; < - <x,, ., =1
be a partition of the interval [0,1]. As in [4], we will also use /" to denote
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the set {x,, .., x,,} of interior partition points. Let U= {u,. .., u,} be a
system of non-negative integers and denote by A{J", U) the collection of all
complex-valued continuous functions f on [0, 1] whose restrictions on
each I;=[x,, x,, (] are analytic on I;, j=1, .., m, and satisfy the joining
conditions

f(l‘)(xj_)zf(s)(x;\')’ S:O’ e L{]’ 7

and
f(u,+ ”(X; ) _.#f(u,+ 1 |(xj+ )

If U=0 :={0,..,0}, then we will simply write A(I, U)=A(I). Let w
denote an arbitrary weight function, i.e., w is measurable and 0 <w < o
a.c. on [0, 1]. For any measurable function f defined on [0, 1], we will use
the notation

“l lf(x)l"w(x)dxpp if 0<p<oo,

Y J
Hf” Lo(w) =
ess sup | f(x)| w(x) if p=om.
O<x<l
Of course, if 1<p<oo, |-l defines a norm for the space L,(w) of

functions f with [ f]l, ., <oc. Let R,[a, ] denote the collection of all
rational functions p,/q, where p, and ¢, are in =n,, the set of all
polynomials of degree <n, and are relatively prime, with ¢,(x) #0 for all x
in {a, b]. In addition, set R,=R,[0,1] and R={J,R,. Let

A:0=po<y < - <y =1t

be another partition of [0, 1] and V= {r,, .., t;} the corresponding system
of non-negative integers. Let s be a fixed function in the class 4{4, V). The
“distance” of f from sR, will be denoted by

en(svf)L,,lw} = lnf{ “f— Sr;z H L,,,(w}: rn € Rn }7
where 0 <p < oo. We also need the following notation introduced in [4].

For any weight function w on [0, 1], set

bl
Up(w)={xe[0, 17 w(t) dt = oo, for all §>0}

[x—6.x+8]n[0.1] )

if 0<p< oo and

U, {w)= {xe [0,17]: ess sup w(x)= oo, for all §> 0}

[x—8.x+81n[0, 1]
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For any systems @&={8,,..,0,} and & ={p,..p} with
0<8,<--- <6, <! and py, .., x>0, denote by W,(0, .#), 0<p< o,
the collection of all weight functions w on [0, 1] that satisfy the conditions

U,w)=0

and

k

ﬂ |- — 0" e L (w)

s=1

The main result in this paper can be stated as follows.

THEOREM |, Let the classes A(I, U) and A(4, V) be defined as above, s
a fixed function in A(A, V), 0<p< o0, and w a given weight function on
[0,1). Then a necessary and sufficient condition for es, f}r ) —0 as
n— oo where [ is an arbitrary function in A(I', U)\R, is thait there exist @
and A such thar we W (0, #} and the following conditions are satisfied:

(i) The set ®={xe[0,1]:5(x)=0} is finite and P U, (w)=4¢;
Sfurthermore, if p= co, then for every ¢ € @

lim €ss sup w(x)=0.
-0t xelo—8, ¢+31n [0, 1] V

(it) If 0,=x,€T, then

al-if& Ixre- 5620 =0 " i1 =0 H
or
alin3+ Ixte, 8,+ 610~ 0,1 ) 1) = 0. (2)
(ili) If B,=y, €4, then
;,igﬁ %o~ 6830 — ;)" Hl Lyiny =0
or

: st —
dl‘i.ﬂ(’]l* “X[e,, 9,+a](‘_6j)v* ”L,,(w)—o'

Here and throughout, y, denotes, as usual, the characteristic function of
the set J.
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2. PrRoOOF OF THE NECESSITY CONDITION

Suppose that

en(s’f)Lp(w)-_’O i?’}

as n— o, for any fe A(I, U)\R. The proof of the existence of & and .#
such that we W, (6, .#4) is similar to that given in [4] (of course, it is
possible that both of @ and .# are empty). Next we prove the necessity of
the conditions in (i). Assume that @ is an infinite set. Then s vanishes iden-
tically on some interval I;=[x,, x;, ,]. Let fe A(I, UNR with f(x)=1 for
xel,. By (3), there exists a sequence {r,} <R such that

”len Lp(w) S “f__s rn“L,,{w) _>O

It follows that w(x)=0 for almost all x on [, which is a contradiction to
our assumption on w. Set ® = {¢,, .., ¢,} and let {r,} be a sequence in R
such that

p,= H fO—S ry ” Lplw) '»0’

where f,e A(I, U) and satisfies fy(xj> 1 for all xe [0, 1 1. For every fixed
n, there exists a positive J, such that

MaXx SUP | X e_s,. ¢+, 0. 110X} S(X) 7,{x) < 1/2.
J x

Thus we obtain

q
Z ”X[w,fé,,, @+ 8,110, 1] I Lot <2¢p,—0
j=1
as n—> oc. It is easy to see that this is equivalent to the conditions in {i).

Now we will show that conditions (ii) and (iii} are also necessary.

Let us first assume that 6,=x,el\4. Since U, (w)=¢, there
exists a small positive 6* such that 5 does not vanish on [0 —J¥,
8,+0*1n [0, 1], and without loss of generality, we may assume that on
this set s>¢* >0, and since 8;¢ 4, that s is analytic there. By [4], there
exist r, € R such that

- 0, (4}

Lplw)

pr = i—r Xto,- s
" - s nt X[6,—6%6,+8*1~ [0, 1]

where

flx)=(x—8)""", for xe [0,— 6% 0,+5*1n[0,1].
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If both (1) and (2) do not hold, then r, must be of the form

(x =8 Py, 1(x)

q.(x)

rn(x) = 2

where p, ., 1€, _ (4, +1) and g,€m,. Hence, by (4)

* —
13

Sgn(-_Hj)+ 1 ﬂpn—uslvl(')‘
2s(+) ga(-)

X("‘H/)M”HX[e,—(s*,aﬁa*]n[al](') -0

Lp(w)
and it follows that

d pnfu:lll(x)

dx  q,(x) -

x=0

(cf. the proof of Theorem ! in [4]). But this is impossible. Similarly, if
8,=y, e A\I', then we arrive at a similar contradiction when we assume
that both (1) and (2) do not hold.

Now suppose that §,=x, =y,,e I'n 4, and set v=min(xu,,, v, ). Assume
that both

5l_i>nol+ ||X[9,75, 9,](')("@')”IHL,,(w)zo (5)
and
5Iin(')1+ ”X[@,,9,+5](') ('_Oj)v-’—l“Lp(w)=0 (6)

do not hold. Then since @ N U,(w) =@, we may assume that s(x)>¢e*>0
on some small interval [0,— 6%, 0,+6*]n [0, 1]. From (3), we obtain (4)
for some {r,} =R. Set

S(x)

FO=15 xe[0,—8% 0,4+6*1n [0, 1].

Then both of the restrictions of f* on [0,— 6%, 6,] and [0,, 0,+6*] are
analytic on the corresponding intervals. Furthermore, (d4°/dx’) f*(x),
s=0, .., v, are continuous at x =0, and

d"+1 dv+l
Wf*(af ) #Wf*(()f )-
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Set

0 )) oy

Then f* —p* is of the form
fRx)—pHx)=g*(x)}{x—8,) "' where xe [0,—-6%,8,+5*]1n [0, L]

and g* satisfies the inequality
g (07 ) #g*(6;).
If both (5) and (6) do not hold, then r, must be of the form

(x_e)\+lpn (\+l)( )
q.(x) '

ri(x)=p*(x)+

From {4) it follows that

Pr—v () v
” g*(')—ﬁ'('—gﬂ HX[B,—a*.a,+5*}m[o,1}(') 5
qn(') Lyiw} =0
yielding
_ii_pn—(v+l)(x) -0
dx qn(x) x=6, ’

which is again a contradiction.

3. PROOF OF THE SUFFICIENCY CONDITION

In order to prove that the conditions in Theorem ! are sufficient we need
several lemmas. The first one was established in {4].

LEMMA 1. Let n=exp(—1/\/n), &, n e[ —1,0)0(0, 11, u>0, and
4,>0, j=1, .., q. Then for any constants 6, B, C, ¢, and ¢, ..., &, satisfying
0<d<1/2, | < BIHI+1 <, c>1, and £>0,

there exist rational functions r,e R, [—1, 1] with m,=n+ O(\/; ) such
that
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Isgn x —r,(x))

0(1) for XG[_V[", rln]’
B[;l]+l \/; ~ ~
0<< ) > [l Ix=&—¢B V| |x—eB V|

€ >0
Jor xe[n" 1],

= Brul+ 1y 7 ~ _
¢ ( ) )H x=&—g B V|4 |x—g B

€ & <0
for xel[—1, —n"],

~ 4 n
O(C )T Ix—&—e B~ for d<IxI<1,

j=1
where the “O” terms are independent of x.

The second lemma we need is a well known result of Bernstein.

LEMMA 2. Ler f be analytic on [a, b]. Then there exists a sequence of
polynomials p, in m,, and a positive 4 such that

max_|f(x)—p,(x)| = O(e=*").

as<n<b

LeMMA 3. Let 8, B> 0 be given, I'={x, x,} =(0,1), U= {u,, u,} and
we W, (0, .#), 0<p< o, for some O={0,,..,0,} and M ={p,, .. w}.
Suppose that f is a piecewise analytic function of the form

S(x)=(x—x)“~ l(x‘ xz)u2+l g(x) X[.\fl.xz](x)’

where g is analytic on the interval I, =[x,,x,]. Then there exists
r,€R,, n=ny such that

1= 7all Ly = O(A4 ™" + £,(B)) (7)
Jor some A>1 and B> 1, where

&(B)= ) ~min(&, (B), &} (B))
BS:x/EF
with
&, (B)= (B_VJ;)"’Jr1 “X[exré, OJ—B‘\?]“L,,(W)

n,s
1
+ |IX[9;~B‘\71, 6,](‘)('—0s)"’+ ”1_,,(..4
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and

o — it _
é-rts(B):(B NAr HX[95+B’\",65+6]1!L,,(u'!
+ e, 0,4 53— 03 -
Furthermore, {r,} converges uniformly to f on [0, 1].

The proof of this lemma is similar to that of Lemma 4 in [4]. We
assume, without loss of generality, that § >0 is so small that g is analytic
on [x,—d,x,+35] and 0,¢[x;—6, x,)u(xy, x,+81, s=1,., k Con-
struct a polynomial p, of degree <3 g (., ([, ]+ 1) such that

polx)—g(x)= J] (x—8)" " g{x),

Ose [xi. x2]

where g is also analytic on [x,—9, x,+ 6] By Lemma 2, there is a
polynomial p, of degree SK[\/;z] — > ([, ]+ 1) such that

18(x) —=pi{x)| =0(e ")
uniformly for xe [x, — 9, x,+0]. Set
pax)=po(x)— [T (x—=0)03" 1 pi(x).
05e [xy, x2]
Then p, is a polynomial of degree K[x/;] and
pox)—glx)=0(e " ] Ix—=6,1» (8)
B,elx). x2]

uniformly for xe [x,— 9, x,+3J].
There are the following possible cases:

(1) @nd=¢;

(2) x,=0,€0,x,¢0;

(3) x,¢0,x,=0,€0;or

{(4) both x; =0 and x, =10, belong to the set 6.

For simplicity, we will only give the proof for the case {4) since the others
can be verified similarily. Set

X =x—2B"~" and X'=x,—2B">",
where

i . 1 / 1 )‘
B== 1 — )1 — L
2"““{ “""([mjﬂ)’ “"p([usz]ﬂ,}
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If » is sufficiently large, then we have
0.¢[x, x)ux", x,), s=1,..,k
By (8), we see that

Xx (X)) (x — x, yatix—x,)et! pa(x)—f(x)

_ kK
=0(e V") I 1x=0,1" = X, g () x = x )17 H(x = x)" ()
s=1

+ X, x;:_](x)(x —x)t "x— X,)t ! P2(x). 9)

Write
Xrx xq(x) =3{sgn(x — x’) —sgn(x — x")}.

By Lemma 3, there are rational functions 7 and 7 of degree n + 0(\/77 ) such
that

|F(x) —sgn(x — x")|

o(1) for xe[0,1],
k
= { OBW It ey TT |x =0,/  for |x—x'|=y" and xe[0,1],
s=1
~ k
o) I Ix—8,]* for |x—x'|26 and xe[0,1],
s=1
and
|F(x) —sgn(x — x")|
o(1) for |x—x"|<n",

_ ok
= | O(BU¥21* )W T |x~0,]*  for |x—x"|>n" and xe[0,1],
s=1

&
o(C V") I] Ix—86,* for |x—x"|>6 and xe[0,-1],
s=1

where C is an arbitrarily given positive constant. It is known that
Pa(x)=0(e*' V")

for some 4’ > 0 uniformly for xe [0, 1]. Set C=exp{l’ + 1) and

—_—

r¥(x) =3 (F(x) — #(x))(x —x,)" " H(x — x)"2 " py(x).

2
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Then we obtain, using (9),

/=y = O(e™") + O(BI1 " )
+ O(B™1+ 1 fe)N" + (&, (B)) + O(&7 (B)),

”n, 52

and this, in turn, assures the existence of r,e R, such that
If=rull Ly =0(4~")+ O& 7 (B)+ &, (B))

for some 4> 1 and B> 1. Similarly, there exist r, R, such that

”f_ r, ” Lp(w) = O(A *\x'n) + O(éafzsl(:?) + ép.:.—sz(B))v
1f=rall Lyy=O(A™~") + O(& (B + &, (B)),

(023

1F =70 | Ly = OCA ")+ O(& £, (B) + &7 (B)).

“ n,5)

Hence, combining these estimates, we obtain (7). By the same proof,
we can also conclude that {r,} converges uniformly to f on [0, 1]. This
completes the proof of the lemma.

Remark 1. A similar proof also shows that the result in Lemima 3 also
holds for x,=0 andfor x,= 1.

We are now ready to prove that the conditions in Theorem [ are
sufficient.

Let = {9, .., ¢,} where ¢, < --- <¢,. We will only consider the case
where ¢, #0 and ¢, # 1, since the other cases can be verified in a similar
manner. Choose smalil (31‘.” and 5}.2‘,j= 1, ..., g, such that

s(@;— @) = |s(@;+ 62 :=1,,
ls(x)l < h; for xe [@;— 6!V, ¢, + 2],

Jj=1,.., g, and U,(w)n Z=¢, where
z=ULo,=of". o+ o)
J
Now,

N X[0,1]\z}

Hf_ Sr, ” Lp(w) <

s Lofus

+ If“srn|Xz”Lp1w):=H1+H2<
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Define a continuous function g on [0, 1] as follows:

@ for xe[0, 1]\Z,

s(x)

linear otherwise.

glx)=

By Lemma 3, it is easy to show that there exist r, € R,,, n>n,, such that
H, < sl & = rull L,y = 0, (10)

as n— o0, {r,} converges to g uniformly on Z, and (7) holds. Hence, for all
large n, we have

s ra\Xx <2 U,h- 1, '_1’"., .
xe[(pj‘"}l)v(pj_'_a}z)] | ( )I ”f” c Ity J= q
It follows that

4
Hy <[ flle 1zl oy + 21 e 2 27 1S Xrg - a0 gy 500l Loy (11)
=1

J

According to the assumption (i) of the theorem, for any given ¢ > 0, we can
choose 6{''>0 and 6’ >0, j=1, .., g, such that

[zl Ly <&
Hence, we obtain
H,<C, | fllo¢ (12}

for some constant C, depending only on g. Combining (10), (11), and (12),
we arrive at

en(s’f)Lp(w) - 09

as n — co. This completes the proof of the theorem.

4. APPROXIMATION ORDER

We will establish the following result.

THEOREM 2. Let the classes A(I, U) and A(4, V) be given as above,
0<p< o, and s and w satisfy the conditions in Theorem 1. If s(x) >0 for all
xe [0, 1], then
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(i) there exist A>1 and B> 1 such that for every f in A(I", U)
a8, f) 1,00 = OA™~") + O(&,(BY),
(i1) there is a A >0 such that for every f in A{I, U)

en(s,f)Lp’W) = O(e—}x\’n)
whenever
max g;< min {ug+ 1,00+ 1},

G,elua l<ssm, 1<s' </
Here,
5(B)= Z min(&, (B), £ (B))

Gielud

207

(13)

with &, (B) and & ! (B) defined, similar to the notations used in Lemma 3,

as follows:
(1) If8,=x,eI'\4, then
6 dB)= (B~ "ty s 57l Ly
F X g 271 (=207 s
87 (B)= (B ") yre 5 e a1l yom
+ 1% 0xy 5+ 57 ()= x4t Lotwy

(2) If0,=y,ed\I, then &, (B)and &}

ns ns

the exception that x; and u; are replaced by y, and v;, respectively.
(3) If,=x,=y,ednT, then

&, (B)= (B";)min(u“’ 1 Xro, s 6,— 8-l Lotw)
+ %6, 876,90 ) — g,)minto B+ £o0¢)
and & (B) is defined similarly.
We now sketch a proof of this result. If s> 0, then it follows that

”f—s rn ” Lp(w) g ”S“ el ”g—_ rn “ Lp(”“)s

where g=flse A(['*, U*), I'*=I'vud={z,,.,2,} with z,<z,< --

I U ={uf, . uk}, and u¥, j=1, ., m', defined by

u; if zel\4,
uf= <« v, if z,ed\T,

min(u;, v;) if zednl.

{B) are defined as above with

<
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Hence, there is a polynomial p, of degree <X, u* +m’ such that
g(x) =polx) =3 (x—2x,)"" (x = x; )11 g(x) (%)

=Y filx) (15)

say, where I;=[z;,2,,,],j=0, .., m’, and g, is analytic on ;. By Lemma 3
and Remark 1, we see that there exist 4,>1 and B;>1, j=0,.., m’, such
that

€ulf) Ly = O(A; V") + O(8,(B)), j=0, 1, ., m'". (16)

Then (14), (15), and (16) together give the conclusion (i) in Theorem 2.
If the condition (13) is satisfied, then it is easy to see that

&(B)=0(B ")

for some B;> 1. Thus, (ii) follows from (i).

Remark 2. Condition (13) cannot be deleted. In fact if there is a
0,4 such that py=min{u,+1,0,+1}, then conclusion (ii) of
Theorem 2 does not hold.

5. APPROXIMATION OF PIECEWISE SMOOTH FUNCTIONS

We need some notation. Suppose that /" and U are given as in Section 1
and ¢ is a positive integer such that max; u;<gq. Denote by CI’, U) the
collection of all complex-valued continuous functions f on [0, 1] whose
restrictions on each /;=[x;, x;,,] belong to C%([)), the class of functions
with gth order continuous derivatives on 7, and satisfy the joining
conditions

f(s)(x.~ ) =f(5)(x.+ ), s=0,..,u,,
J J ;
with

f(uj+ l)(xj— ) #f(u,+ l)(xj+ )

for j=0, .., m.

By modifying the proofs in the above discussions, we have also
established analogous results for the class C9([1, U). We state these results
without proof.
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THEOREM 3. Let s be a given function in A{4, V), O<p< o0, and w a
given weight function on [0, 1]. Then a necessary and sufficient condition for
en(s,f)Lp(“., -0 as n— oo, where f is an arbitrary function in CYI, U), is
that the conditions of Theorem 1 are satisfied and p;< g for all j=1, ..., k.

THeOREM 4. Let s and w satisfy the conditions in Theorem 3 with
O<p<oo. If s(x)>0 for all xe[0, 1], then

(i} there exists B> 1 such that for every fin C[I, U}

1m 1
en(Sif)Lp(“‘): O(éL)"(B))AF O <; Z ® (f:” ;1‘>Lp) )

j=0

where f, denotes the restriction of f on I; and w(f,, 1/n),, the L modulus of
continuity of f;, and

(i)
| - FANEAN
erz(s’f)Lp(tt')':O(_'; Z w f;W— )
n? < nj,
j=0 P
provided
max pu,;< min {u,+1, 0, +1}.
Gelrvua -~ l<ssm igs €/
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