Characterization of Weights in Best Rational Weighted Approximation of Piecewise Smooth Functions, II

Charles K. Chui*
Department of Mathematics, Texas A \& M University, College Station, Texas 77843, U.S.A.
AND
Xian-Liang Shi ${ }^{\dagger}$
Department of Mathematics, Hangzhou University, Hangzhou, People's Republic of China
Communicated by R. Bojanic
Received April 4, 1986

1. Introduction

The problem of characterization of weights in weighted L_{p} rational approximation of piecewise smooth functions f was introduced and studied in [4]. A motivation for the study of this subject is its relationship to the realization of recursive filters. In practice, it is sometimes desirable to include a multiplicative factor s with the rational approximant r_{n}. This leads to the so-called generalized inverse approximation problem (cf. $[1,3]$). An example is $f \equiv 1$, and in this case r_{n} provides an inverse approximation of $1 / s$, which is a generalization of the least-squares inverse approximation that guarantees stability [2]. To facilitate our discussion, we need some notation and definitions.

Let

$$
\Gamma: 0=x_{0}<x_{1}<\cdots<x_{m+1}=1
$$

be a partition of the interval $[0,1]$. As in [4], we will also use Γ to denote

[^0]the set $\left\{x_{1}, \ldots, x_{m}\right\}$ of interior partition points. Let $U=\left\{u_{1}, \ldots, u_{m}\right\}$ be a system of non-negative integers and denote by $A(\Gamma, U)$ the collection of all complex-valued continuous functions f on $[0,1]$ whose restrictions on each $I_{j}=\left[x_{j}, x_{j+1}\right]$ are analytic on $I_{j}, j=1, \ldots, m$, and satisfy the joining conditions
$$
f^{(s)}\left(x_{j}^{-}\right)=f^{(s)}\left(x_{j}^{+}\right), \quad s=0, \ldots, u_{j},
$$
and
$$
f^{\left(u_{j}+1\right)}\left(x_{j}^{-}\right) \neq f^{\left(u_{j}+11\right.}\left(x_{j}^{+}\right) .
$$

If $U=0:=\{0, \ldots, 0\}$, then we will simply write $A(\Gamma, U)=A(\Gamma)$. Let w denote an arbitrary weight function, i.e., w is measurable and $0<w<\infty$ a.e. on $[0,1]$. For any measurable function f defined on $[0,1]$, we will use the notation

$$
\|f\|_{L_{p^{(u)}}}= \begin{cases}\left\{\int_{0}^{1}|f(x)|^{p} w^{\prime}(x) d x\right\}^{1 / p} & \text { if } 0<p<\infty \\ \operatorname{ess} \sup |f(x)| w(x) & \text { if } p=\infty \\ 0 \leqslant x \leqslant 1\end{cases}
$$

Of course, if $1 \leqslant p \leqslant \infty,\|\cdot\|_{L_{p}(w)}$ defines a norm for the space $L_{p}(w)$ of functions f with $\|f\|_{L_{p}(w)}<\infty$. Let $\mathbf{R}_{n}[a, b]$ denote the collection of all rational functions p_{n} / q_{n} where p_{n} and q_{n} are in π_{n}, the set of all polynomials of degree $\leqslant n$, and are relatively prime, with $q_{n}(x) \neq 0$ for all x in $[a, b]$. In addition, set $\mathbf{R}_{n}=\mathbf{R}_{n}[0,1]$ and $\mathbf{R}=\bigcup_{n} \mathbf{R}_{n}$. Let

$$
\Delta: 0=y_{0}<y_{1}<\cdots<y_{l+1}=1
$$

be another partition of $[0,1]$ and $V=\left\{c_{1}, \ldots, v_{l}\right\}$ the corresponding system of non-negative integers. Let s be a fixed function in the class $A(\Delta, V)$. The "distance" of f from $s \mathbf{R}_{n}$ will be denoted by

$$
e_{n}(s, f)_{L_{p}(w)}:=\inf \left\{\left\|f-s r_{n}\right\|_{L_{p^{\prime}}(w)}: r_{n} \in \mathbf{R}_{n}\right\}
$$

where $0<p \leqslant \infty$. We also need the following notation introduced in [4]. For any weight function w on $[0,1]$, set

$$
U_{p}\left(u^{\prime}\right)=\left\{x \in[0,1]: \int_{[x-\delta, x+\delta] \cap[0,1]} w(t) d t=x, \text { for all } \delta>0\right\}
$$

if $0<p<\infty$ and

$$
U_{\infty}(w)=\left\{x \in[0,1]: \quad \operatorname{ess} \sup _{[x-\delta \cdot x+\delta] n[0,1]} w(x)=\infty, \text { for all } \delta>0\right\}
$$

For any systems $\Theta=\left\{\theta_{1}, \ldots, \theta_{k}\right\} \quad$ and $\quad \mathscr{M}=\left\{\mu_{1}, \ldots, \mu_{k}\right\} \quad$ with $0 \leqslant \theta_{1}<\cdots \leqslant \theta_{k} \leqslant 1$ and $\mu_{1}, \ldots, \mu_{k}>0$, denote by $W_{p}(\Theta, \mathscr{M}), 0<p \leqslant \infty$, the collection of all weight functions w on $[0,1]$ that satisfy the conditions

$$
U_{p}(w)=\Theta
$$

and

$$
\prod_{s=1}^{k}\left|\cdot-\theta_{s}\right|^{\mu_{s}} \in L_{p}(w)
$$

The main result in this paper can be stated as follows.
Theorem 1. Let the classes $A(\Gamma, U)$ and $A(A, V)$ be defined as above, s a fixed function in $A(A, V), 0<p \leqslant \infty$, and w a given weight function on $[0,1]$. Then a necessary and sufficient condition for $e_{n}(s, f)_{L_{p(w)} \rightarrow 0}$ as $n \rightarrow \infty$ where f is an arbitrary function in $A(\Gamma, U) \backslash \mathbf{R}$, is that there exist Θ and \mathscr{M} such that $w \in W_{p}(\Theta, \mathscr{M})$ and the following conditions are satisfied:
(i) The set $\Phi=\{x \in[0,1]: s(x)=0\}$ is finite and $\Phi \cap U_{p}(w)=\phi$; furthermore, if $p=\infty$, then for every $\varphi \in \Phi$

$$
\lim _{\delta \rightarrow 0^{+}} \operatorname{ess} \sup _{x \in \varphi-\phi+\phi] n[0,1]} w(x)=0 .
$$

(ii) If $\theta_{j}=x_{s_{1}} \in \Gamma$, then

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}}\left\|\chi_{\left[\theta_{j}-\delta . \theta_{J}\right]}\left(-\theta_{j}\right)^{u_{3_{1}}+1}\right\|_{L_{p}\left(w^{\prime}\right)}=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}}\left\|\chi_{\left[\theta_{j}, \theta_{j}+\delta\right]}\left(--\theta_{j}\right)^{u_{s_{1}}+1}\right\|_{L_{p}\left(w^{\prime}\right)}=0 . \tag{2}
\end{equation*}
$$

(iii) If $\theta_{j}=y_{s_{2}} \in \Delta$, then
or

$$
\lim _{\delta \rightarrow 0^{+}}\left\|\chi_{\left[\theta_{j}, \theta_{j}+\delta\right]}\left(-\theta_{j}\right)^{v_{S_{2}}+1}\right\|_{L_{p}\left(w^{\prime}\right)}=0 .
$$

Here and throughout, χ_{y} denotes, as usual, the characteristic function of the set J.

2. Proof of the Necessity Condition

Suppose that

$$
\begin{equation*}
e_{n}(s, f)_{L_{p}\left(w^{\prime}\right)} \rightarrow 0 \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$, for any $f \in A(\Gamma, U) \backslash \mathbf{R}$. The proof of the existence of Θ and A such that $w \in W_{p}(\Theta, \mathscr{A})$ is similar to that given in [4] (of course, it is possible that both of Θ and \mathscr{A} are empty). Next we prove the necessity of the conditions in (i). Assume that Φ is an infinite set. Then s vanishes identically on some interval $I_{j}=\left[x_{j}, x_{j+1}\right]$. Let $f \in A(\Gamma, U) \backslash \mathbf{R}$ with $f(x)=1$ for $x \in I$. By (3), there exists a sequence $\left\{r_{n}\right\} \subset \mathbf{R}$ such that

$$
\left\|\chi_{I_{J}}\right\|_{L_{p}\left(w^{\prime}\right)} \leqslant\left\|f-s r_{n}\right\|_{L_{r^{\prime}\left(w^{\prime}\right)}} \rightarrow 0
$$

It follows that $w^{\prime}(x)=0$ for almost all x on I_{j}, which is a contradiction to our assumption on w. Set $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{q}\right\}$ and let $\left\{r_{n}\right\}$ be a sequence in \mathbf{R} such that

$$
\rho_{n}:=\left\|f_{0}-s r_{n}\right\|_{L_{p}(w)} \rightarrow 0
$$

where $f_{0} \in A(\Gamma, U)$ and satisfies $f_{0}(x)>1$ for all $x \in[0,1]$. For every fixed n, there exists a positive δ_{n} such that

$$
\max \sup _{r}\left|\chi_{\left[\varphi_{-} \delta_{n}, \varphi_{,}+\delta_{n}\right] \cap[0,1]}(x) s(x) r_{n}(x)\right| \leqslant 1 / 2
$$

Thus we obtain

$$
\sum_{j=1}^{q}\left\|\chi_{\left[\varphi_{1}-\delta_{n}, \varphi_{j}+\delta_{n}\right] \cap[0,1]}\right\|_{L_{p}(w)} \leqslant 2 q \rho_{n} \rightarrow 0
$$

as $n \rightarrow \infty$. It is easy to see that this is equivalent to the conditions in (i).
Now we will show that conditions (ii) and (iii) are also necessary.
Let us first assume that $\theta_{j}=x_{s_{1}} \in \Gamma \backslash \Delta$. Since $\Phi \cap U_{p}(w)=\phi$, there exists a small positive δ^{*} such that s does not vanish on $\left[\theta,-\delta^{*}\right.$, $\left.\theta_{j}+\delta^{*}\right] \cap[0,1]$, and without loss of generality, we may assume that on this set $s>\varepsilon^{*}>0$, and since $\theta_{j} \notin \Delta$, that s is analytic there. By [4], there exist $r_{n} \in \mathbf{R}$ such that

$$
\begin{equation*}
\rho_{n}^{*}:=\left\|\left|\frac{f}{s}-r_{n}\right| \chi_{\left[\theta_{1}-\delta^{*}, \theta_{1}+\delta^{*}\right] \cap[0,1]}\right\|_{L_{\rho}(w)} \rightarrow 0 \tag{4}
\end{equation*}
$$

where

$$
f(x)=\left(x-\theta_{j}\right)_{+}^{u_{j}+1}, \text { for } x \in\left[\theta_{j}-\delta^{*}, \theta_{j}+\delta^{*}\right] \cap[0,1] .
$$

If both (1) and (2) do not hold, then r_{n} must be of the form

$$
r_{n}(x)=\frac{\left(x-\theta_{j}\right)_{+}^{u_{s_{1}}+1} p_{n-u_{s_{1}-1}}(x)}{q_{n}(x)}
$$

where $p_{n-u_{s \mid}-1} \in \pi_{n-\left(u_{s \mid}+1\right)}$ and $q_{n} \in \pi_{n}$. Hence, by (4)

$$
\begin{aligned}
\rho_{n}^{*}= & \|\left|\frac{\operatorname{sgn}\left(\cdot-\theta_{j}\right)+1}{2 s(\cdot)}-\frac{p_{n-u_{s_{1}}-1}(\cdot)}{q_{n}(\cdot)}\right| \\
& \times\left(\cdot-\theta_{j}\right)^{u_{51}+1} \chi_{\left[\theta_{j}-\delta^{*}, \theta_{J}+\delta^{*}\right] \cap[0,1]}(\cdot) \|_{L_{p}(w)} \rightarrow 0
\end{aligned}
$$

and it follows that

$$
\left.\frac{d}{d x} \frac{p_{n-u_{s_{1}-1}(x)}}{q_{n}(x)}\right|_{x=\theta_{j}}=\infty
$$

(cf. the proof of Theorem 1 in [4]). But this is impossible. Similarly, if $\theta_{j}=y_{s_{2}} \in A \backslash \Gamma$, then we arrive at a similar contradiction when we assume that both (1) and (2) do not hold.

Now suppose that $\theta_{j}=x_{s_{1}}=y_{s_{2}} \in \Gamma \cap \Delta$, and set $v=\min \left(u_{s_{1}}, v_{s_{2}}\right)$. Assume that both

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}}\left\|\chi_{\left[\theta_{j}-\delta, \theta_{J}\right]}(\cdot)\left(\cdot-\theta_{j}\right)^{v+1}\right\|_{L_{p}\left(w^{\prime}\right)=0} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}}\left\|\chi_{\left[\theta_{j}, \theta_{j}+\delta\right]}(\cdot)\left(\cdot-\theta_{j}\right)^{v+1}\right\|_{L_{p}(w)=0} \tag{6}
\end{equation*}
$$

do not hold. Then since $\Phi \cap U_{p}(w)=\phi$, we may assume that $s(x)>\varepsilon^{*}>0$ on some small interval $\left[\theta_{j}-\delta^{*}, \theta_{j}+\delta^{*}\right] \cap[0,1]$. From (3), we obtain (4) for some $\left\{r_{n}\right\} \subset \mathbf{R}$. Set

$$
f^{*}(x)=\frac{f(x)}{s(x)}, \quad x \in\left[\theta_{j}-\delta^{*}, \theta_{j}+\delta^{*}\right] \cap[0,1]
$$

Then both of the restrictions of f^{*} on $\left[\theta_{j}-\delta^{*}, \theta_{j}\right]$ and $\left[\theta_{j}, \theta_{j}+\delta^{*}\right]$ are analytic on the corresponding intervals. Furthermore, $\left(d^{s} / d x^{s}\right) f^{*}(x)$, $s=0, \ldots, v$, are continuous at $x=\theta_{j}$ and

$$
\frac{d^{v+1}}{d x^{v+1}} f^{*}\left(\theta_{j}^{-}\right) \neq \frac{d^{v+1}}{d x^{v+1}} f^{*}\left(\theta_{j}^{+}\right)
$$

Set

$$
p^{*}(x)=\sum_{s=0}^{v} \frac{1}{s!}\left(\frac{d^{s}}{d x^{s}} f^{*}\left(\theta_{j}\right)\right)\left(x-\theta_{j}\right)^{s} .
$$

Then $f^{*}-p^{*}$ is of the form
$f^{*}(x)-p^{*}(x)=g^{*}(x)\left(x-\theta_{j}\right)^{n+1} \quad$ where $x \in\left[\theta_{j}-\delta^{*}, \theta_{j}+\delta^{*}\right] \cap[0,1]$
and g^{*} satisfies the inequality

$$
g^{*}\left(\theta_{i}^{-}\right) \neq g^{*}\left(\theta_{j}^{+}\right) .
$$

If both (5) and (6) do not hold, then r_{n} must be of the form

$$
r_{n}(x)=p^{*}(x)+\frac{\left(x-\theta_{j}\right)^{v+1} p_{n-(v+1)}(x)}{q_{n}(x)}
$$

From (4) it follows that

$$
\left\|\left|g^{*}(\cdot)-\frac{p_{n-(v+1)}(\cdot)}{q_{n}(\cdot)}\right|\left(\cdot-\theta_{j}\right)^{v+1} \chi_{\left[\theta j-\delta^{*}, \theta,+\delta^{*}\right] \cap[0,1]}(\cdot)\right\|_{L_{p}(w) \rightarrow 0}
$$

yielding

$$
\left.\frac{d}{d x} \frac{p_{n-(v+1)}(x)}{q_{n}(x)}\right|_{x=\theta_{1}}=\infty
$$

which is again a contradiction.

3. Proof of the Sufficiency Condition

In order to prove that the conditions in Theorem 1 are sufficient we need several lemmas. The first one was established in [4].

Lemma 1. Let $\eta=\exp (-1 / \sqrt{n}), \xi_{1}, \ldots, \xi_{q} \in[-1,0) \cup(0,1], \mu>0$, and $\mu_{j}>0, j=1, \ldots, q$. Then for any constants $\delta, B, C, \varepsilon$, and $\varepsilon_{1}, \ldots, \varepsilon_{q}$ satisfying $0<\delta<1 / 2, \quad 1<B^{[\mu]+1}<e, \quad c>1, \quad$ and $\varepsilon>0$,
there exist rational functions $r_{n} \in R_{m_{n}}[-1,1]$ with $m_{n}=n+O(\sqrt{n})$ such that
$\left.\mid \operatorname{sgn} x-r_{n}(x)\right)$

$$
=\left\{\begin{array}{lrl}
O(1) & \text { for } \quad x \in\left[-\eta^{n}, \eta^{n}\right], \\
O\left(\left(\frac{B^{[\mu]+1}}{e}\right)^{\sqrt{n}}\right) \prod_{\xi_{j}>0}\left|x-\xi_{j}-\varepsilon_{j} B^{-\sqrt{n}}\right|^{\mu_{j}}\left|x-\varepsilon B^{-\sqrt{n}}\right|^{\mu} \\
O\left(\left(\frac{B^{[\mu]+1}}{e}\right)^{\sqrt{n}^{n}}\right) \prod_{\xi_{j}<0}\left|x-\xi_{j}-\varepsilon_{j} B^{-\sqrt{n}}\right|^{\mu_{j}}\left|x-\varepsilon B^{-\sqrt{n}}\right|^{\mu} \\
\text { for } & x \in\left[\eta^{n}, 1\right], \\
O\left(C^{-\sqrt{n}}\right) \prod_{j=1}^{q}\left|x-\xi_{j}-\varepsilon_{j} B^{-\sqrt{n}}\right|^{\mu_{j}} & \text { for } & x \in\left[-1,-\eta^{n}\right], \\
\text { for } & \delta \leqslant|x| \leqslant 1,
\end{array}\right.
$$

where the " O " terms are independent of x.
The second lemma we need is a well known result of Bernstein.
Lemma 2. Let f be analytic on $[a, b]$. Then there exists a sequence of polynomials p_{n} in π_{n} and a positive λ such that

$$
\max _{a \leqslant n \leqslant b}\left|f(x)-p_{n}(x)\right|=O\left(e^{-\lambda n}\right)
$$

Lemma 3. Let $\delta, \beta>0$ be given, $\Gamma=\left\{x_{1}, x_{2}\right\} \subset(0,1), U=\left\{u_{1}, u_{2}\right\}$ and $w \in W_{p}(\Theta, \mathscr{H}), 0<p \leqslant \infty$, for some $\Theta=\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ and $\mathscr{M}=\left\{\mu_{1}, \ldots, \mu_{k}\right\}$. Suppose that f is a piecewise analytic function of the form

$$
f(x)=\left(x-x_{1}\right)^{u_{1}+1}\left(x-x_{2}\right)^{u_{2}+1} g(x) \chi_{\left[x_{1}, x_{2}\right]}(x)
$$

where g is analytic on the interval $I_{1}=\left[x_{1}, x_{2}\right]$. Then there exists $r_{n} \in R_{n}, n \geqslant n_{0}$ such that

$$
\begin{equation*}
\left\|f-r_{n}\right\|_{L_{p}\left(w^{\prime}\right)}=O\left(A^{-\sqrt{n}}+\mathscr{E}_{n}(B)\right) \tag{7}
\end{equation*}
$$

for some $A>1$ and $B>1$, where

$$
\mathscr{E}_{n}(B)=\sum_{\theta_{s}=x, \in \Gamma} \min \left(\mathscr{E}_{n, s}^{-}(B), \mathscr{E}_{n, s}^{+}(B)\right)
$$

with

$$
\begin{aligned}
\mathscr{E}_{n, s}^{-}(B)= & \left(B^{-\sqrt{n}}\right)^{u_{j}+1}\left\|\chi_{\left[\theta_{s}-\delta_{,} \theta_{s}-B^{-}, \bar{n}\right]}\right\|_{L_{p}(w)} \\
& +\left\|\chi_{\left[\theta_{s}-B^{-}, \bar{n}, \theta_{s}\right]}(\cdot)\left(\cdot-\theta_{s}\right)^{u_{j}+1}\right\|_{L_{p}(w)}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{E}_{n, s}^{+}(B)= & \left(B^{-\sqrt{n})^{\mu_{j}+1}}\left\|\chi_{\left[\theta_{s}+B^{-}, n_{n}, \theta_{s}+\delta\right]}\right\|_{L_{p}(w)}\right. \\
& +\left\|\chi_{\left[\theta_{s}, \theta_{s}+B^{-}, n_{]}\right]}(\cdot)\left(\cdot-\theta_{s}\right)^{u_{j}+1}\right\|_{L_{p}\left(w^{\prime}\right)} .
\end{aligned}
$$

Furthermore, $\left\{r_{n}\right\}$ converges uniformly to f on $[0,1]$.
The proof of this lemma is similar to that of Lemma 4 in [4]. We assume, without loss of generality, that $\delta>0$ is so small that g is analytic on $\left[x_{1}-\delta, x_{2}+\delta\right]$ and $\theta_{s} \notin\left[x_{1}-\delta, x_{1}\right) \cup\left(x_{2}, x_{2}+\delta\right], s=1, \ldots, k$. Construct a polynomial p_{0} of degree $\leqslant \sum_{\theta_{\mathrm{s}} \in\left[x_{1}, x_{2}\right]}\left(\left[\mu_{s}\right]+1\right)$ such that

$$
p_{0}(x)-g(x)=\prod_{\theta_{s} \in\left[x_{1}, x_{2}\right]}\left(x-\theta_{s}\right)^{\left[\mu_{s}\right]+1} \bar{g}(x),
$$

where \tilde{g} is also analytic on $\left[x_{1}-\delta, x_{2}+\delta\right]$. By Lemma 2, there is a polynomial p_{1} of degree $\leqslant K[\sqrt{n}]-\sum_{s}\left(\left[\mu_{s}\right]+1\right)$ such that

$$
\left|\bar{g}(x)-p_{1}(x)\right|=O\left(e^{-V^{n}}\right)
$$

uniformly for $x \in\left[x_{1}-\delta, x_{2}+\delta\right]$. Set

$$
p_{2}(x)=p_{0}(x)-\prod_{\theta_{5} \in\left[x_{1}, x_{2}\right]}\left(x-\theta_{s}\right)^{\left[\mu_{s}\right]+1} p_{i}(x) .
$$

Then p_{2} is a polynomial of degree $K[\sqrt{n}]$ and

$$
\begin{equation*}
p_{2}(x)-g(x)=O\left(e^{-,,^{-}}\right) \prod_{\theta_{s} \in\left[x_{1}, x_{2}\right]}\left|x-\theta_{s}\right|^{\mu_{s}} \tag{8}
\end{equation*}
$$

uniformly for $x \in\left[x_{1}-\delta, x_{2}+\delta\right]$.
There are the following possible cases:
(1) $\Theta \cap \Delta=\phi$;
(2) $x_{1}=\theta_{s_{0}} \in \Theta, x_{2} \notin \Theta$;
(3) $x_{1} \notin \Theta, x_{2}=\theta_{s_{0}} \in \Theta$; or
(4) both $x_{1}=\theta_{s_{1}}$ and $x_{2}=\theta_{s_{2}}$ belong to the set Θ.

For simplicity, we will only give the proof for the case (4) since the others can be verified similarily. Set

$$
x^{\prime}=x_{1}-2 B^{-\gamma^{\prime}} \quad \text { and } \quad x^{\prime \prime}=x_{2}-2 B^{-v^{n}}
$$

where

$$
B=\frac{1}{2} \min \left\{1+\exp \left(\frac{1}{\left[\mu_{s_{1}}\right]+1}\right), 1+\exp \left(\frac{1}{\left[\mu_{s_{2}}\right]+1}\right)\right\} .
$$

If n is sufficiently large, then we have

$$
\theta_{s} \notin\left[x^{\prime}, x_{1}\right) \cup\left[x^{\prime \prime}, x_{2}\right), \quad s=1, \ldots, k
$$

By (8), we see that

$$
\begin{align*}
& \chi_{\left[x^{\prime}, x^{\prime \prime}\right]}(x)\left(x-x_{1}\right)^{u_{1}+1}\left(x-x_{2}\right)^{u_{2}+1} p_{2}(x)-f(x) \\
& \left.=O\left(e^{-\sqrt{n}}\right) \prod_{s=1}^{k} \mid x-\theta_{s}\right)^{\mu_{s}}-\chi_{\left[x^{\prime}, x_{1}\right]}(x)\left(x-x_{1}\right)^{u_{1}+1}\left(x-x_{2}\right)^{u_{2}+1} p_{2}(x) \\
& \quad+\chi_{\left[x^{\prime \prime}, x_{2}\right]}(x)\left(x-x_{1}\right)^{u_{1}+1}\left(x-x_{2}\right)^{u_{2}+1} p_{2}(x) \tag{9}
\end{align*}
$$

Write

$$
\chi_{\left[x^{\prime}, x^{\prime \prime}\right]}(x)=\frac{1}{2}\left\{\operatorname{sgn}\left(x-x^{\prime}\right)-\operatorname{sgn}\left(x-x^{\prime \prime}\right)\right\} .
$$

By Lemma 3, there are rational functions \tilde{r} and \hat{r} of degree $n+O(\sqrt{n})$ such that

$$
\begin{aligned}
& \left|\tilde{r}(x)-\operatorname{sgn}\left(x-x^{\prime}\right)\right| \\
& = \begin{cases}O(1) & \text { for } x \in[0,1], \\
O\left(B^{\left[\mu_{s}\right]+1} / e\right)^{\sqrt{n}} \prod_{s=1}^{k}\left|x-\theta_{s}\right|^{\mu_{s}} & \text { for }\left|x-x^{\prime}\right| \geqslant \eta^{n} \text { and } x \in[0,1], \\
O\left(C^{-\sqrt{n}}\right) \prod_{s=1}^{k}\left|x-\theta_{s}\right|^{\mu_{s}} & \text { for }\left|x-x^{\prime}\right| \geqslant \delta \text { and } x \in[0,1],\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\hat{r}(x)-\operatorname{sgn}\left(x-x^{\prime \prime}\right)\right| \\
& = \begin{cases}O(1) & \text { for }\left|x-x^{\prime \prime}\right| \leqslant \eta^{n}, \\
O\left(B^{\left[\mu_{s 2}\right]+1} / e\right)^{\sqrt{n}} \prod_{s=1}^{k}\left|x-\theta_{s}\right|^{\mu_{s}} & \text { for }\left|x-x^{\prime \prime}\right|>\eta^{n} \text { and } x \in[0,1], \\
O\left(C^{-\sqrt{n}}\right) \prod_{s=1}^{k}\left|x-\theta_{s}\right|^{\mu_{s}} & \text { for }\left|x-x^{\prime \prime}\right| \geqslant \delta \text { and } x \in[0,-1]\end{cases}
\end{aligned}
$$

where C is an arbitrarily given positive constant. It is known that

$$
p_{2}(x)=O\left(e^{\lambda^{\prime} \sqrt{n}}\right)
$$

for some $\lambda^{\prime}>0$ uniformly for $x \in[0,1]$. Set $C=\exp \left(\lambda^{\prime}+1\right)$ and

$$
r^{*}(x)=\frac{1}{2}(\tilde{r}(x)-\hat{r}(x))\left(x-x_{1}\right)^{u_{1}+1}\left(x-x_{2}\right)^{u_{2}+1} p_{2}(x) .
$$

Then we obtain, using (9),

$$
\begin{aligned}
\left\|f-r^{*}\right\|_{L_{\rho}(w)}= & O\left(e^{-r^{-\bar{n}}}\right)+O\left(B^{\left[\mu_{1}\right]+1} e\right)^{r^{n}} \\
& +O\left(B^{\left[\mu_{s 2}\right]+1} / e\right)^{\sqrt{n}}+O\left(\mathscr{E}_{n, s,}^{-}(B)\right)+O\left(\mathscr{E}_{n, s s_{2}}^{-}(B)\right),
\end{aligned}
$$

and this, in turn, assures the existence of $r_{n} \in \mathbf{R}_{n}$ such that

$$
\left\|f-r_{n}\right\|_{L_{p}\left(w^{(}\right)}=O\left(A^{-,^{\cdot \bar{n}}}\right)+O\left(\mathscr{E}_{n, s_{1}}^{-}(B)+\mathscr{E}_{n . s_{2}}^{-}(B)\right)
$$

for some $A>1$ and $B>1$. Similarly, there exist $r_{n} \in R_{n}$ such that

$$
\begin{aligned}
& \left\|f-r_{n}\right\|_{L_{\rho(w)}}=O\left(A^{-\sqrt{n}}\right)+O\left(\mathscr{E}_{n, s_{1}(\tilde{B})}+\mathscr{E}_{n, s_{2}}^{\varepsilon_{2}}(B)\right), \\
& \left\|f-r_{n}\right\|_{L_{\rho}\left(w^{\prime}\right)}=O\left(A^{-\sqrt{n}}\right)+O\left(\mathscr{E}_{n, s_{1}}^{+}(B)+\mathscr{E}_{n_{1}, s_{2}}(B),\right.
\end{aligned}
$$

or

$$
\left\|f-r_{n}\right\|_{L_{p}\left(w^{\prime}\right)}=O\left(A^{-v^{-/}}\right)+O\left(\mathscr{E}_{n, s_{1}}^{+}(B)+\mathscr{E}_{n . s_{2}}^{+}(B)\right) .
$$

Hence, combining these estimates, we obtain (7). By the same proof, we can also conclude that $\left\{r_{n}\right\}$ converges uniformly to f on $[0,1]$. This completes the proof of the lemma.

Remark 1. A similar proof also shows that the result in Lemma 3 also holds for $x_{1}=0$ and/or $x_{2}=1$.

We are now ready to prove that the conditions in Theorem 1 are sufficient.

Let $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{q}\right\}$ where $\varphi_{1}<\cdots<\varphi_{q}$. We will only consider the case where $\varphi_{1} \neq 0$ and $\varphi_{4} \neq 1$, since the other cases can be verified in a similar manner. Choose small $\delta_{j}^{(1)}$ and $\delta_{j}^{(2)}, j=1, \ldots, q$, such that

$$
\begin{gathered}
\left|s\left(\varphi_{j}-\varphi_{j}^{(1)}\right)\right|=\left|s\left(\varphi_{j}+\delta_{j}^{(2)}\right)\right|:=h_{j}, \\
|s(x)| \leqslant h_{j} \quad \text { for } x \in\left[\varphi_{j}-\delta_{l}^{(1)}, \varphi_{j}+\delta_{j}^{(2)}\right],
\end{gathered}
$$

$j=1, \ldots, q$, and $U_{p}\left(w^{\prime}\right) \cap Z=\phi$, where

$$
Z=\bigcup_{j}\left[\varphi_{j}-\delta_{j}^{(1)}, \varphi_{j}+\delta_{j}^{(2)}\right] .
$$

Now,

$$
\begin{aligned}
\left\|f-s r_{n}\right\|_{L_{p}(w)} \leqslant & \left\|s\left|\frac{f}{s}-r_{n}\right| \chi_{[0,1]: z}\right\|_{L_{r^{\prime}(u)}} \\
& +\left\|\left|f-s r_{n}\right| \chi_{Z}\right\|_{L_{p}(w)}:=H_{1}+H_{2} .
\end{aligned}
$$

Define a continuous function g on $[0,1]$ as follows:

$$
g(x)= \begin{cases}\frac{f(x)}{s(x)} & \text { for } x \in[0,1] \backslash Z \\ \text { linear } & \text { otherwise }\end{cases}
$$

By Lemma 3, it is easy to show that there exist $r_{n} \in R_{n}, n \geqslant n_{0}$, such that

$$
\begin{equation*}
H_{1} \leqslant\|s\|_{\infty}\left\|g-r_{n}\right\|_{L_{p}\left(w^{\prime}\right)} \rightarrow 0 \tag{10}
\end{equation*}
$$

as $n \rightarrow \infty,\left\{r_{n}\right\}$ converges to g uniformly on Z, and (7) holds. Hence, for all large n, we have

$$
\sup _{x \in\left[\varphi_{J}-\delta f^{11}, \varphi_{J}+\delta \delta^{22}\right]}\left|r_{n}(x)\right| \leqslant 2\|f\|_{\infty} h_{j}^{-1}, \quad j=1, \ldots, q
$$

It follows that

$$
\begin{equation*}
H_{2} \leqslant\|f\|_{\infty}\left\|\chi_{Z}\right\|_{L_{p}(w)}+2\|f\|_{\infty} \sum_{j=1}^{q} h_{j}^{-1}\left\|s \chi_{\left[\varphi_{j}-\delta_{j}^{(1)}, \varphi_{j}+\delta_{j}^{(2)}\right]}\right\|_{L_{p}(w)} \tag{11}
\end{equation*}
$$

According to the assumption (i) of the theorem, for any given $\varepsilon>0$, we can choose $\delta_{j}^{(1)}>0$ and $\delta_{j}^{(2)}>0, j=1, \ldots, q$, such that

$$
\left\|\chi_{Z}\right\|_{L_{p}\left(h^{\prime}\right)}<\varepsilon
$$

Hence, we obtain

$$
\begin{equation*}
H_{2} \leqslant C_{q}\|f\|_{\infty} \varepsilon \tag{12}
\end{equation*}
$$

for some constant C_{q} depending only on q. Combining (10), (11), and (12), we arrive at

$$
e_{n}(s, f)_{L_{p}(w)} \rightarrow 0
$$

as $n \rightarrow \infty$. This completes the proof of the theorem.

4. Approximation Order

We will establish the following result.
Theorem 2. Let the classes $A(\Gamma, U)$ and $A(\Lambda, V)$ be given as above, $0<p \leqslant \infty$, and s and w satisfy the conditions in Theorem 1. If $s(x)>0$ for all $x \in[0,1]$, then
(i) there exist $A>1$ and $B>1$ such that for every f in $A(\Gamma, U)$

$$
e_{n}(s, f)_{L_{p}(w)}=O\left(A^{-\sqrt{n}}\right)+O\left(\mathscr{E}_{n}(B)\right)
$$

(ii) there is $a \lambda>0$ such that for every f in $A(\Gamma, U)$

$$
e_{n}(s, f)_{L_{p}\left(w^{\prime}\right)}=O\left(e^{-\lambda_{,} \cdot \vec{n}}\right)
$$

whenever

$$
\begin{equation*}
\max _{\theta_{j} \in \Gamma \cup \Delta} \mu_{j}<\min _{1 \leqslant s \leqslant m, 1 \leqslant s^{\prime} \leqslant!}\left\{u_{s}+1, v_{s^{\prime}}+1\right\} . \tag{13}
\end{equation*}
$$

Here,

$$
\mathscr{E}_{n}(B)=\sum_{\theta_{s} \in \Gamma \cup \Delta} \min \left(\mathscr{E}_{n, s}^{-}(B), \mathscr{E}_{n, s}^{+}(B)\right)
$$

with $\mathscr{E}_{n, s}^{-}(B)$ and $\mathscr{E}_{n, s}^{+}(B)$ defined, similar to the notations used in Lemma 3, as follows:
(1) If $\theta_{s}=x_{j} \in \Gamma \backslash \Delta$, then

$$
\begin{aligned}
& \mathscr{E}_{n . s}^{-}(B)=\left(B^{-V^{-}}\right)^{u_{j}+1}\left\|\chi_{\left[x_{j}-\delta, x_{j}-B^{-}, \bar{n}_{]}\right]}\right\|_{L_{p}(w)} \\
& +\left\|\chi_{\left[x_{j}-B^{-\sqrt{n}} \cdot x_{j}\right]}(\cdot)\left(\cdot-x_{j}\right)^{u_{j}+1}\right\|_{L_{p}(w)}, \\
& \mathscr{E}_{n, s}^{+}(B)=\left(B^{-\sqrt{n}}\right)^{u_{j}+1}\left\|\chi_{\left[x_{j}+B^{-} \bar{n}^{-}, x_{j}+\delta\right]}\right\|_{L_{p}(W)} \\
& +\left\|\chi_{\left[x_{j}, x_{j}+B^{-}, \bar{n}^{n}\right]}(\cdot)\left(\cdot-x_{j}\right)^{u_{j}+i}\right\|_{L_{p}(w)} .
\end{aligned}
$$

(2) If $\theta_{s}=y_{j} \in \Delta \backslash \Gamma$, then $\mathscr{E}_{n, s}^{-}(B)$ and $\mathscr{E}_{n, s}^{+}(B)$ are defined as above with the exception that x_{j} and u_{j} are replaced by y_{j} and v_{j}, respectively.
(3) If $\theta_{s}=x_{i_{1}}=y_{j_{2}} \in A \cap \Gamma$, then

$$
\begin{aligned}
\mathscr{E}_{n, s}^{-}(B) & =\left(B^{-}, \bar{n}\right)^{\min \left(u_{1}, r_{\sqrt{2}}\right)+1}\left\|\chi_{\left[\theta_{s}-j, \theta_{s}-B^{-}, \overline{n_{j}}\right]}\right\|_{L_{p}(w)} \\
& \left.+\| \chi_{\left[\theta_{s}-B^{-}, \bar{n}^{-}, \theta_{s}\right]}(\cdot) \cdot-\theta_{s}\right)^{\min \left(u_{j_{1}}, c_{f_{2}}\right)+1} \|_{L_{p}(w)}
\end{aligned}
$$

and $\mathscr{E}_{n, 3}^{+}(B)$ is defined similarly.
We now sketch a proof of this result. If $s>0$, then it follows that

$$
\begin{equation*}
\left\|f-s r_{n}\right\|_{L_{p}(w)} \leqslant\|s\|_{\infty}\left\|g-r_{n}\right\|_{L_{p}}(w) \tag{14}
\end{equation*}
$$

where $g=f / s \in A\left(\Gamma^{*}, U^{*}\right), \Gamma^{*}=\Gamma \cup \Delta=\left\{z_{1}, \ldots, z_{m^{\prime}}\right\}$ with $z_{1}<z_{2}<\cdots<$ $z_{m^{\prime}}, U^{*}=\left\{u_{1}^{*}, \ldots, u_{m^{\prime}}^{*}\right\}$, and $u_{j}^{*}, j=1, \ldots, m^{\prime}$, defined by

$$
u_{j}^{*}=\left\{\begin{array}{lll}
u_{j} & \text { if } & z_{j} \in \Gamma \backslash \Delta \\
v_{j} & \text { if } & z_{j} \in \Delta \backslash \Gamma \\
\min \left(u_{j}, v_{j}\right) & \text { if } & z_{j} \in \Delta \cap \Gamma
\end{array}\right.
$$

Hence, there is a polynomial p_{0} of degree $\leqslant \sum_{j=1}^{n^{\prime}} u_{j}^{*}+m^{\prime}$ such that

$$
\begin{align*}
g(x)-p_{0}(x) & =\sum_{j=0}^{m^{\prime}}\left(x-x_{j}\right)^{u^{*+1}}\left(x-x_{j+1}\right)^{u_{j+1}^{*}+1} g_{j}(x) \chi_{l_{j}}(x) \\
& =\sum_{j=0}^{m^{\prime}} f_{j}(x) \tag{15}
\end{align*}
$$

say, where $I_{j}=\left[z_{j}, z_{j+1}\right], j=0, \ldots, m^{\prime}$, and g_{j} is analytic on I_{j}. By Lemma 3 and Remark 1, we see that there exist $A_{j}>1$ and $B_{j}>1, j=0, \ldots, m^{\prime}$, such that

$$
\begin{equation*}
e_{n}\left(f_{j}\right)_{L_{p}\left(w^{\prime}\right)}=O\left(A_{j}^{-\sqrt{n}}\right)+O\left(\mathscr{E}_{n}\left(B_{j}\right)\right), j=0,1, \ldots, m^{\prime} \tag{16}
\end{equation*}
$$

Then (14), (15), and (16) together give the conclusion (i) in Theorem 2.
If the condition (13) is satisfied, then it is easy to see that

$$
\mathscr{E}_{n}\left(B_{j}\right)=O\left(\bar{B}^{-\sqrt{n}}\right)
$$

for some $\bar{B}_{j}>1$. Thus, (ii) follows from (i).
Remark 2. Condition (13) cannot be deleted. In fact if there is a $\theta_{j_{0}} \in \Delta \cap \Gamma$ such that $\mu_{j_{0}}=\min \left\{u_{s}+1, v_{s}+1\right\}$, then conclusion (ii) of Theorem 2 does not hold.

5. Approximation of Piecewise Smooth Functions

We need some notation. Suppose that Γ and U are given as in Section 1 and q is a positive integer such that $\max _{j} u_{j}<q$. Denote by $C^{q}(\Gamma, U)$ the collection of all complex-valued continuous functions f on $[0,1]$ whose restrictions on each $I_{j}=\left[x_{j}, x_{j+1}\right]$ belong to $C^{q}\left(I_{j}\right)$, the class of functions with q th order continuous derivatives on I_{j}, and satisfy the joining conditions

$$
f^{(s)}\left(x_{j}^{--}\right)=f^{(s)}\left(x_{j}^{+}\right), \quad s=0, \ldots, u_{j}
$$

with

$$
f^{\left(u_{j}+1\right)}\left(x_{j}^{-}\right) \neq f^{\left(u_{l}+1\right)}\left(x_{j}^{+}\right)
$$

for $j=0, \ldots, m$.
By modifying the proofs in the above discussions, we have also established analogous results for the class $C^{q}(\Gamma, U)$. We state these results without proof.

Theorem 3. Let s be a given function in $A(A, V), 0<p \leqslant \infty$, and wa given weight function on $[0,1]$. Then a necessary and sufficient condition for $e_{n}(s, f)_{L_{p}(n)} \rightarrow 0$ as $n \rightarrow \infty$, where f is an arbitrary function in $C^{q}(\Gamma, U)$, is that the conditions of Theorem 1 are satisfied and $\mu_{j} \leqslant q$ for all $j=1, \ldots, k$.

Theorem 4. Let s and w satisfy the conditions in Theorem 3 with $0<p \leqslant \infty$. If $s(x)>0$ for all $x \in[0,1]$, then
(i) there exists $B>1$ such that for every f in $C^{q}[\Gamma, U)$

$$
e_{n}(s, f)_{L_{p}(w)}=O\left(\mathscr{E}_{n}(B)\right)+O\left(\frac{1}{n} \sum_{j=0}^{m} \omega\left(f_{j}, \frac{1}{n}\right)_{\Sigma_{p}}\right)
$$

where f_{l} denotes the restriction of f on I_{j} and $\omega\left(f_{1}, 1 / n\right)_{L_{p}}$ the L_{p}-modulus of continuity of f_{i}, and
(ii)

$$
e_{n}(s, f)_{L_{p}(w)}=O\left(\frac{1}{n^{4}} \sum_{j=0}^{m} \omega\left(f_{j}, \frac{1}{n}\right)_{L_{p}}\right)
$$

provided

$$
\max _{\theta, \in \Gamma \cup A} \mu_{j}<\min _{1 \leqslant s \leqslant m, 1 \leqslant s^{\prime} \leqslant 1}\left\{u_{s}+1, i_{s^{\prime}}+1\right\} .
$$

References

1. R. Beatson, C. K. Chui, and M. Hasson, Degree of bes: inverse approximation by polynomials, Illinois J. Math. 26 (1982), 173-180.
2. C. K. Chul, Approximation by double least-square inverses, J. Math. Anai. Appl. 75 (1980). 149-163.
3. C. K. Chui, Problems and results on best inverse approximation, in "Approximation Theory III" (E. W. Cheney, Ed), pp. 299-304, Academic Press, New York, 1980.
4. C. K. Chui and X. L. Shi, Characterization of weights in best rational weighted approximation of piecewise smooth functions I, CAT Report No. 96, Texas A \& M University, J. Approx. Theory 54 (1988).

[^0]: * This author was supported by the U.S. Army Research Office under Contract No. DAAG 29-84-K-0154.
 + This author was a Visiting Scholar at Texas A \& M University during the period August-December 1985 and was supported by the National Science Foundation under Grant No. INT-8416057.

